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OCCUPANCY IMPACT ON THE INDOOR AIR QUALITY  
OF THE MONITORED OPEN-OFFICES  

 
 
 

Abstract: Humans spend 90% of their time indoors therefore proper air quality in buildings is crucial for 
human health and productivity. The problem with poor air quality is usually found in buildings with no 
mechanical ventilation. Contrary, modern office buildings, which are usually equipped with mechanical 
ventilation, are often over-ventilated. The reason is usually related to lower-than-designed buildings’ 
occupancies. In the context of a pandemic, the occupancy of the buildings has significantly decreased, 
meanwhile the ventilation systems often operate at the design air flow rates thus causing a waste of energy.  
The paper presents long-term occupancy and CO2 concentration monitoring results for 4 office buildings. All of 
the buildings showed very low occupancies and over-ventilation of the rooms. Seeking to decarbonize the 
buildings sector much is done to strengthen the requirements for energy efficiency of buildings, but the results 
of the study prove once more that the potential of better building energy using systems management is still 
unexploited. 
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Introduction 
Overall, buildings account for 36% of global energy demand and 37% of energy-related CO2 [1]. To 
meet the EU’s climate objectives, the building sector will need to achieve 60% greenhouse gas (GHG) 
emissions reductions by 2030 and fully decarbonise by 2050. Unfortunately, Europe is not on track: 
buildings still account for 40% of the EU’s total energy consumption and 36% of CO2 emissions [2].  
Heating, ventilation and air conditioning (HVAC) systems are the most consuming service worldwide 
(38%), both in residential (32%) and tertiary (47%) sectors [3], but today, people spend up to 90% of 
their time in an indoor environment, therefore energy efficiency in buildings cannot be reached at the 
cost of thermal comfort or indoor air quality (IAQ).  
It is well known that IAQ has a significant impact on health, well-being, and human performance. The 
most common indoor air pollutant is CO2 and it is commonly used as a metric of IAQ [4]. To ensure 
a minimum ventilation rate to guarantee proper IAQ countries have established different 
requirements for indoor CO2 concentrations [5], but it is commonly assumed that when the CO2 level is 
higher than 1000 ppm, it indicates that the room is polluted and it can lead to poor well-being, health, 
and productivity [6]. The main source of CO2 in the room is its occupants. Their presence in the 
building determines: 1) when the building needs to be ventilated and 2) how much it needs to be 
ventilated to satisfy the required IAQ level.  
Occupancy (demand) based ventilation is a key solution to optimise energy consumption related to 
ventilation. Here different sophisticated, artificial intelligence-based methodologies are developed and 
proposed by scientists already for some years. E.g. novel image-based occupancy positioning system 
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for demand-oriented ventilation [7], different neural network-based methods [6, 8], deep vision-based 
ventilation control, which could properly maintain the indoor CO2 concentration with 24-35% lower 
ventilation rates compared to traditional ventilation control strategies [9]. As Khan et al. [10] have 
concluded, even design airflow for HVAC sizing could potentially be reduced using actual occupancy 
information. Even taking into account that Covid-19 pandemic has brought upfront significant changes 
in buildings IAQ to minimize the spread of viruses [11], demand-controlled ventilation is still 
considered a key solution to keep buildings safe and energy efficient, just more novel CO2-based 
demand-controlled ventilation strategies can be applied [12, 13].  
Intelligent use of energy within buildings is a recent trend of research studies and is the goal of 
Building Energy and Comfort Management systems, which requires a proper understanding of the 
interaction between occupants and building systems [14] as well as a sufficient amount of data to train 
the prediction models and to keep high reliability. As Xie et al. (2021) have noted, data is the soul of 
the digitalisation and intelligentisation of buildings [15]. And here also can be added, that occupancy 
data is also very important when simulating buildings' energy performance during the design phase, 
as it enables to decrease Energy Performance Gap when buildings start to operate. Precise building 
occupancy patterns and activities input data enable to achieve a very good agreement between real 
energy consumption and simulated one [16].  
The goal of this paper is to demonstrate based on long-term measurements of 4 modern office 
buildings how occupancy changed within recent years and accordingly, how it has influenced the IAQ 
measured in terms of CO2. 
 
Methodology 
The research is based on long-term (not less than 3 months) measurements performed in 4 office 
buildings in Vilnius (Lithuania). All the buildings are built after 2005 and have energy efficiency 
certificates – 3 buildings had energy efficiency label class “B” and one building had label class “D”. They 
also have mechanical balanced air ventilation systems with heat recovery.  
The monitoring time covered before the pandemic, total lockdown, and post-pandemic periods. The 
generated sample data in different buildings varied from 2653 to 7819. 
The occupancy was measured using Table Air double-check motion sensors (PIR) which were 
mounted under the tables. They calculated how many people are in the room and the time that 
employees spend at their workplaces. The sensor's laser detected movement and the temperature 
sensor confirmed that an employee was sitting at the current workplace. 
The CO2 concentration was measured with the weather station HOBO MX1102A every 5 min. The data 
were processed to obtain hourly values for occupancy and CO2 concentrations for all of the measured 
periods and each week separately.  
 
TABLE 1. Monitored buildings properties 

Building Energy efficiency 
label 

Year of construction/ 
useful area 

Predicted (certificated) 
energy consumption 

Actual normalised heating 
energy consumption 

B_1 B 2017/2405 m2 43 59 

B_2 B, LEED GOLD 2017/22 164 m² 19 56 

B_3  D 2008/6567 m² 128 114 

B_4  B 2014/4107 m² 26 174 
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TABLE 2. Monitoring periods and equipment 

Building Monitoring period Occupancy CO2 concentration 
Sample data 

(hourly 
values) 

B_1 From 05/01/2021 to 27/11/2021 
From total lockdown to the post-
quarantine period 

Table Air sensor 
Motion sensor (PIR): 
– Heat sensor 
– Data transfer 4.0LE 
– WiFi 2.4 GHz 

Weather station HOBO 
MX1102A: 
– Measurement range 

from 0 to 5000 ppm 
– Error ±50 ppm 

7819 

B_2 From 15/07/2019 to 23/12/2019  
Before pandemic 

3862 

B_3 From 07/04/2022 to 28/04/2022 
From 05/05/2022 to 30/07/2022 
Post-quarantine  

2653 

B_4 From 2021/12/16 to 2022/05/13 
From 2022/06/06 to 2022/08/31 
Post-quarantine 

5381 

 
Results 
Occupancy monitoring results. The monitored occupancy in buildings has shown just slightly different 
numeric results, despite that measurements were performed at different pandemic conditions, e.g. 
building B_2 was measured before the pandemic, and therefore higher occupancies were expected in this 
building. Meanwhile building B_1 measurement period includes different periods of the pandemic, from 
total lock-down to the post-quarantine period. Buildings B_3 and B_4 measurements already include a 
period, which can be considered as post-quarantine, as the specific time of the end of the pandemic is not 
defined. Therefore we may state, that measured periods enable us to have a view of building occupancies 
in different situations. The variation of the maximum measured occupancies within the buildings is in a 
range of 0.48-0.7 (the highest value was measured in building B_3). But these values do not reflect 
typical occupancies, it just shows that actual occupancies within the long-term measurements never 
reached even half of the design values. When analysing average weekly occupancies during the 
measured periods for monitored buildings it is noticed that the highest daily peak occupancies are found 
on Mondays varying from 0.15 to 0.38 (highest values are for building B_3 and lowest for B_1). The 
gathered occupancies are provided in Table 3. 

CO2 monitoring results. The results of the CO2 concentrations measured in 4 buildings are provided in 
Figures 1-4. The separate grey lines in the figures present weekly variations and the black lines 
present average weekly curves from Monday to Friday. Orange lines mark the limits of the levels of 
indoor air quality – IDA 1 (high quality, when CO2 concentration is less than 400 ppm above the 
outdoor air concentration) and IDA 2 (average quality, when CO2 concentration is 400-600 ppm above 
the outdoor air concentration). It is assumed that outdoor air CO2 concentration is 400 ppm, 
accordingly, IDA 1 corresponds to up to 800 ppm and IDA 2 – up to 1000 ppm.  
 
TABLE 3. Measured occupancies 

Building Maximum occupancy 
measured within the period 

Average daily peak occupancy 

Monday Tuesday Wednesday Thursday Friday 

B_1 0.4 0.15 0.13 0.14 0.11 0.12 

B_2 0.4 0.28 0.24 0.19 0.22 0.21 

B_3 0.7 0.38 0.31 0.33 0.29 0.16 

B_4 0.48 0.18 0.19 0.14 0.10 0.12 
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Building B_1 (Fig. 1). It is seen that air quality in building B_1 nearly all the time corresponds to IDA 1 
quality and is even better. Just once, when the occupancy was 0.4, the concentration was higher and 
almost reached the limit of IDA 2. An average peak concentration is less than 600 ppm. So most of the 
time room is over-ventilated. This is related to very low occupancies of the room, which are mainly 
influenced by changes in user behaviours and switching to remote work even after quarantine ended.  
 

 
FIGURE 1. Weekly CO2 concentrations variation for open-office of the building B_1 

 
Building B_2 (Fig. 2). Building B_2 was monitored before the pandemic, therefore low occupancies here 
are related to other reasons than remote work. The open office is an engineering office where employees 
have no personal workstations and do not sit in the office permanently, as they have to travel a lot and 
because of that reason workstations are often unoccupied. It is seen that air quality in the building B_2 
most of the time is between the IDA 1 and IDA 2 categories, most of the time is around the IDA 1 
category, but looking at averaged curve – concentration is usually below 800 ppm. Here energy saving 
potential of the ventilation system is smaller compared to building B_1, but seeking to save energy, 
switching to IDA 2 category can give higher savings, especially taking into account that the same 
occupant does not stay for the whole day in the office, there is no need to keep IDA 1 category.  
 

 
FIGURE 2. Weekly CO2 concentrations variation for open-office of building B_2 

 
Building B_3 (Fig. 3). Building B_3 was monitored during a post-quarantine time, the occupancy of the 
building stayed very low, and here, we may see how the pandemic has changed the occupancy as most 
occupants were working remotely even when quarantine ended. What is specific about that building is 
that higher CO2 fluctuations within each working day can be noticed, e.g. each week is very different 
(grey curves). Hence, similar to the other buildings, occupancies are higher at the beginning of the 
week and lowest on Fridays. Indoor air quality is nearly 100% sufficient – CO2 concentration between 
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IDA 1 and IDA 2 categories. From averaged curves, it can be seen that CO2 concentrations are lower 
than 600 ppm thus obviously showing a waste of energy and insufficient control of the ventilation 
system as it does not correspond to the real demand.  
 

 
FIGURE 3. Weekly CO2 concentrations variation for open-office of building B_3 

 
Building B_4 (Fig. 4). Building B_4 was monitored also during a post-quarantine time, and the 
situation with the occupancy is very similar to building B_3. The occupancy curves are very similar to 
all of the buildings, but the CO2 concentrations have different curves than for the other buildings, the 
concentration stays higher even during unoccupied hours, this tendency is seen during the winter time 
when more employees were working remotely compared to spring and summer months. So 
concentration peaks at 6:00 p.m. can not be explained by occupancies, just by some changes in 
ventilation system management. Nevertheless, the air quality was nearly always kept at a sufficient 
level – between IDA 1 and IDA 2. According to average curves depending on the weekday, it is not 
exceeding 700 ppm. Here, similar to building B_3 variations of concentration is more difficult to 
predict compared to buildings B_1 and B_2. 
 

 
FIGURE 4. Weekly CO2 concentrations variation for open-office of the building B_4 

 
Figures 1-4 demonstrate variations of CO2 concentrations within different weeks and average weekly 
concentrations, it is beneficial to look at how often concentrations stay in a certain range and this is 
shown in Figure 5. For all of the buildings prevailing range of concentrations is 401-500 ppm. Bus most 
of those hours can be explained with the limitations of the study, as non-working hours are not excluded 
here. But if looking at Figures 1-4 it is seen that such values are also found during occupied periods with 
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low occupancies. Again, similarities in distributions can be seen between buildings B_3 and B_4 (they 
both are scientific administrative buildings, and the other two buildings – are engineering offices).  
 

         

         
FIGURE 5. Frequencies of CO2 concentrations 

 
Conclusions 
Globally, the office sector is going through a period of change exacerbated by COVID-19 lockdowns, 
law changes, flexible working, and structural factors and these realities must be taken into account 
already now. The performed analysis of long-term measurement data just proved that and enabled to 
make the following conclusions: 
1. Real occupancies in 4 measured buildings within different conditions were much lower than design 

values and for 3 buildings they even did not reach 50%. The pandemic resulted in a change in office 
work culture and this number became even lower.  

2. As ventilation demand in offices is calculated according to maximum occupancies (100%) it means 
that in some offices already in the design phase systems are designed for excessive air volumes. 
Therefore more flexibility is needed in the design phase when calculating air volumes (take into 
account more realistic occupancies, occupancies schedules must take into account specifics of the 
office, lower required airflow values per person could be considered, invest in demand-controlled 
ventilation, etc.).  
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3. If no demand controlled (e.g. according to CO2 concentrations) ventilation systems are applied, 
energy is wasted for over-ventilation.  

4. In existing buildings with BMS systems, occupancy or resulting CO2 concentration monitoring 
prediction using Artificial Intelligence-based models (e.g. Machine Learning) could be a key solution 
to more efficient energy usage in ventilation systems. 
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